Part Number Hot Search : 
SF8GZ47 SP4362XC SNC658 SKMD40F SP4362XC K2010 K2010 TA76431F
Product Description
Full Text Search
 

To Download EPR-9 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Title Target Applications Author Document Number Date Revision
Engineering Prototype Report (EPR-9) 5 W, Universal Input, Dual Output, Isolated, TNY266 (EP9) Home Appliance Market S.L. EPR-9 03-April-2001 8
Abstract This document presents the specification, schematic & BOM, transformer calculation, test data, waveforms and EMI scan for a low cost, isolated converter for a home appliance application.
Power Integrations, Inc. 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Table Of Contents
Introduction .................................................................................................................3 Power Supply Requirements Specification .................................................................3 Schematic ...................................................................................................................4 3.1 Configuration "1" 2 kV..........................................................................................4 3.2 Configuration "2" 6 kV..........................................................................................5 4 Circuit Description.......................................................................................................6 5 Layout and Picture......................................................................................................7 6 Bill Of Materials...........................................................................................................9 6.1 Configuration "1", 2 kV.........................................................................................9 6.2 Configuration "2", 6 kV.........................................................................................9 7 Transformer - T1 ......................................................................................................10 7.1 Transformer Drawing .........................................................................................10 7.2 Electrical Specifications .....................................................................................10 7.3 Transformer Construction ..................................................................................10 7.4 Transformer Materials........................................................................................11 7.5 Transformer Winding Instructions......................................................................11 7.6 Transformer Bobbin Dimensions .......................................................................12 7.7 Transformer Spreadsheet..................................................................................13 8 Performance Data.....................................................................................................15 8.1 Efficiency ...........................................................................................................15 8.2 Regulation @ 25 C Ambient.............................................................................16 8.3 Temperature ......................................................................................................17 8.4 Waveforms (2 kV config."1") ..............................................................................18 8.4.1 Turn-on Delay/Hold-up Time ......................................................................18 8.4.2 Auto-Restart ...............................................................................................19 8.5 Transient Response...........................................................................................21 8.6 Conducted EMI Scans .......................................................................................22 8.7 Surge Voltage Immunity (2 kV and 6 kV, 1.2/50 s per IEC1000-4-5)...............23 8.8 Acoustic Emissions............................................................................................24 Appendix A Example of 24 V Output Design....................................................................25 Appendix A1.1 Schematic of 24 V Design ....................................................................25 Appendix A1.2 Bill of Materials (5 W, 5 VDC, 24 VDC PS)..............................................26 Appendix A1.3 Transformer Spreadsheet ....................................................................27 9 Revision History ........................................................................................................29 1 2 3
Important Note: Although the EP-9 is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore all testing should be performed using an isolation transformer to provide the AC input to the prototype board.
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 2 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
1 Introduction
This document presents the specification, schematic & BOM, transformer design, test data, waveforms and EMI scan for a low cost, dual output (5 VDC, 12 VDC), isolated converter for a home appliance application. The unit has to operate up to 85 C ambient and to ride through input voltage surges up to 2 kV (config. "1") or to 6 kV (config. "2"). The unit is also designed to meet the industry safety and EMI standards. The EMI standard is met with a low cost transformer (without shield winding and flux band) and low cost input filter (no common mode choke). There are different input voltage surge withstand requirements depending upon the geographical area the white goods are built for. The power supply designer has to choose the level of protection, the voltage level and the number of surges the unit must survive. For applications with elevated ambient temperature requiring full power, the heat sink (included in the kit) has to be soldered to the board in the slot next to U1. The board is accompanied by a kit that includes a copper heat sink (Fig. 5.2) and the input voltage surge protection components (R7, R8, RV1) for 6 kV (config. "2") protection. For applications requiring 5 VDC and 24 VDC, a schematic, BOM and transformer spreadsheet is included in Appendix A.
2 Power Supply Requirements Specification
Description Input Input Voltage Output Output 1 Voltage Output 1 Ripple Voltage Output 1 Current Output 2 Voltage Output 2 Ripple Voltage Output 2 Current Power Output Continuous Output Power Power supply efficiency Environmental Temperature Input Surge Voltage Withstand Safety EMI-Conducted Symbol VAC VDC OUT VOUT RIPPLE IOUT VDC OUT VOUT RIPPLE IOUT POUT TAMB config."1" config."2" Min 85 10.2 20 4.75 20 0.3 0.3 55 0 2 6 12 100 5 40 Typ Max 265 13.8 150 200 5.25 50 500 2.8 5.0 Units VAC V mV mA V mV mA W W % C kV kV Comment 50/60 Hz (12 V15%) @ full load (-5 V5%) @ full load
85 C ambient* inside box 50 C ambient* inside box @ low line, full load 6"x6"x4" sealed enclosure IEC1000-4-5 (1.2/50 s) IEC1000-4-5 (1.2/50 s) IEC950 CISPR22B ***
85**
*The unit was placed in a 6" x 6" x 4" sealed box inside the temperature chamber. **See Paragraph 4.0. *** FCC accepts CISPR22B @ 115 VAC in place of FCC limit.
Page 3 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
3
3.1
Schematic
Configuration "1" 2 kV
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 4 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
3.2
Configuration "2" 6 kV
Page 5 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
4 Circuit Description
This circuit was designed for Home Appliance applications. The design for this had three main drivers: low cost, high ambient temperature operation and input voltage surge withstand. There are two input protection configurations, "1" (2 kV surge) on page 4 and "2" (6 kV) on page 5. Configuration "1" has a 33 , 3 W fusible resistor (R1) which limits the 2 kV voltage surge current such that the peak charging voltage on C2 does not exceed the breakdown voltage of U1 (TNY266). R1 also functions as a fuse, opening any short that might occur on the primary side. (Pico II, series 263, Littelfuse or TR5, series 370, Wickmann) can be used (if R1 is unavailable in low wattage to ensure fusing). Configuration "2" has two 47 , energy rated resistors (R7, R8), which, along with the varistor RV1, form a voltage divider. The life of RV1 is endless if its energy rating is not exceeded (see Fig. 8.7.1). The energy rated resistors R7, R8 are not fusible and the short circuit current being limited (~0.9 A at 85 VAC) by R7, R8 (94 ), and a 0.5 A fast acting fuse
The efficiency of the 6 kV configuration can be improved at the expense of the total number of 6 kV surges protection, by reducing the value of R7, R8 up to zero. Downstream of the input protection circuits, the operation of the two configurations is identical. In this Home Appliance application (refer to page 4 or 5 of this report), the AC input is rectified and filtered by D1-D4, C1 and C2 to create a high voltage DC buss which is connected to T1. Inductor L1 forms a pifilter in conjunction with C1 and C2. The resistor R2 damps resonance in inductor L1. The frequency jitter in U1 allows the unit to meet worldwide conducted EMI standards using a simple pi-filter in combination with a small value Y1-capacitor C4 and a proper PCB layout. The built-in circuitry of U1 practically eliminates the audio noise permitting the use of ordinary varnished transformers. VR1 and D5 form a clamp circuit that limits the turn-off voltage spike to a safe level on the U1-DRAIN pin. The secondary windings are stacked to improve the cross regulation. The 5 V winding is rectified and filtered by D6, C5 with additional filtering provided by L2, C7 to give the 5 VDC output. The 5 VDC output voltage is determined by the sum of the voltage drops across the optocoupler U2 and the Zener diode VR2. Resistor R3 (AC gain of the circuit) limits the current through U2, improving its response time. Resistor R4 sets the bias current for VR2. The 12 V winding is rectified and filtered by D7, C6 to provide the 12 VDC output. A minimum loading is necessary on the two outputs to keep them within the specified limits. The primary-to-secondary isolation is provided by using parts/materials (opto/transformer insulation) with the correct level of isolation and creepage distances (opto slot/transformer bobbin). Also the C4 value (while allowing common mode noise current path) has to keep the leakage current below the standard (IEC950) accepted value. The 5 VDC and 12 VDC monitoring light emitting diodes (LED2, LED1) and R6, R5 are optional, and have been included in this circuit for troubleshooting convenience. The board has a small, secondary side prototyping area for alternate voltage regulation control. Test points TP1 (U1-SOURCE) and TP2 (U1-DRAIN) are provided for ease of monitoring VDS. TP2 jumper can be replaced with a longer one to allow a current probe insertion for Id monitoring.
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 6 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
5 Layout and Picture
Heat Sink TP1 (U1-S)
Slot For 6 kV
TP2 (U1-D)
Breadboard
Figure 5.1 - Footprint (3.3"X1.2"), With or Without (Derated At 85 C Ambient) Heat Sink. - For the drain-to-source voltage waveforms connect the high voltage probe tip to TP2 and the probe ground to test point TP1. - For switching current waveforms replace jumper TP2 with a wire loop and use a Tektronix A6302 current probe and AM503 current probe amplifier (with TM501 power module) or equivalent.
R1 60.8
Figure 5.2 - Visible Picture.
T1 59 C
D6 58 C
Figure 5.3 - Infrared Picture.
Page 7 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Figure 5.4 - Heat Sink.
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 8 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
6 Bill Of Materials
6.1 Configuration "1", 2 kV
Description 6.8 F, 400 V, 105 C 0.1 F, 50 V, ceramic 2.2 nF, Y1-Safety 180 F, 35 V (0.12 ) 82 F, 35 V 100 F, 10 V Glass Passivated Diode 600 V,1 A, 150 ns 60 V, 1.1 A, Schottky 200 V, 1 A, ultrafast Header, 3 pos., 0.156 spacing low current 2.2 mH 5%, 10.9 , 128 mA 18 H, 10%, 2.2 A 33 , flame proof, fusible, 3 W 4.7 k, 1/8 W 100 , 1/8 W 1 k, 1/8 W 6.8 k, 1/4 W 2.4 k, 1/4 W Transformer EE16 Custom Off-line Switcher Optocoupler 200 V Transient suppressor Zener, 4.3 V 2% Manufacturer Rubycon Panasonic Panasonic Panasonic Panasonic Panasonic Vishay/ Lite On Fagor/Gen. Semi. IR ON/NTE Molex Siemens/HP Bosung Toko Vitrohm (Farnell Components) Yageo Yageo Yageo Yageo Yageo DT Magnetics Power Integrations Sharp General Instrument Diodes Incorporated Part Number 400BXA6R8M10x16 ECU-S1H104KBB ECK-DNA222ME EEUFC1V181 ECA-1VFQ820 ECA-1AFQ101 1N4005GP 1N4937 11DQ6 MUR120/NTE587 26-48-1035 LG3369/HLMP1790 R622LY-180k (08 WX7860)
Item Qty. Ref. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 1 1 1 1 4 1 1 1 2 2 1 1 1 C1, C2 C3 C4 C5 C6 C7 D1- D4 D5 D6 D7 **J1,J2 *LED1,LED2 L1 L2 R1
16 1 R2 17 1 R3 18 1 R4 19 1 *R5 20 1 *R6 21 1 T1 22 1 U1 23 1 U2 24 1 VR1 25 1 VR2 *Optional **Remove middle pin for J1
TBD TNY266P PC817A BZY97C200 1N5991C
6.2
Configuration "2", 6 kV
Manufacturer Littelfuse Ohmite Harris/Littelfuse Part Number Series 263 OX470K V275LA20A
(Add the following items to Configuration "1") Item Qty. Ref. Description 26 1 F1 0.5 A, 250 V, fast-acting fuse 27 2 R7, R8 47 , 1 W 28 1 RV1 Varistor, 275 VAC, 14 mm
Page 9 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
7 Transformer - T1
7.1 Transformer Drawing 1 76T # WDG # 4 5 7.2 Electrical Specifications
Electrical Strength Creepage Primary Inductance Resonant Frequency 60 Hz 1 minute, from Pins 1-4 to Pins 5-10 Between Pins 1-4 All windings open All windings open 3000 VAC 6.4 mm (Min.) 978 H 10% 1.0 MHz (Min.)
10
10T # 28AWG T.I Wire WDG #3
8,9
7T # 28AWG x 2 T.I Wire WDG # 2
7.3
Transformer Construction
Pin Side
9 5 10 8 1 Primary 4 +5 V & 12 V Tape
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 10 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
7.4
Transformer Materials
Item [1] [2] [3] [4] [5] [6] Description 2 Core: PC40 EE16, (YING CHIN YC1607) gapped for Alg=168 nH/T Bobbin: BE-16 (NICERA FEE16) Magnet Wire: # 34 AWG Heavy Nyleze Triple Insulated Wire: # 28 AWG Tape: 3M #10 Reinforced Epoxy Film (Cream) 1.5 mm wide by 5 mils thick Tape: 3M 1298 Polyester Film (white) 8.2 mm wide by 2.2 mils thick
7.5
Transformer Winding Instructions
Tape Margins with item [5] on one side at pins. Match height with Primary windings Start at Pin 4. Wind 26 turns of item [3] from left to right. Wind 25 turns of item [3] from right to left. Then wind the remaining 25 turns in the next layer from left to right. Finish on Pin 1. 1 Layer of tape [6] for basic insulation. Start +5 V winding at Pin 8 (2 wires) of item [4] and +12 V winding at Pin 10 (1 wire) of item [4]. Wind together (3 wires) 7 turns of item [4] from right to left. Wind uniformly, in a single layer, across entire width of bobbin. Finish 5 V winding on Pin 5. Continue +12 V winding with 10 more turns, from left to right and finish at pin 9. 3 Layer of tape [6] for basic insulation. Assemble and secure core halves. Impregnate uniformly [7].
Primary Margins Primary Layer Basic Insulation +5 V and +12 V Interleaved Winding
Basic Insulation Final Assembly
Page 11 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
7.6
Transformer Bobbin Dimensions
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 12 of 32
03-April-2001 7.7 Transformer Spreadsheet Design Warning Power Supply Input
VACMIN VACMAX FL TC Z N Volts Volts Hertz mSeconds % 85 265 50 2.48 0.61 71.0
5 W Universal Input Dual Output Isolated TNY266
Minimum AC Input Voltage Maximum AC Input Voltage AC Main Frequency Bridge Rectifier Conduction Time Estimate Loss Allocation Factor Efficiency Estimate
Power Supply Outputs
VOx IOx Volts Amps 5.00 0.500 12.00 Output Voltage 0.208 Power Supply Output Current
Device Variables
Device PO VDRAIN VDS FSnom FSmin FSmax KRPKDP ILIMITMIN ILIMITMAX IRMS DMAX Watts Volts Volts Hertz Hertz Hertz TNY266 5.00 521 4.7 132000 120000 144000 0.79 0.33 0.38 0.15 0.44 Device Name Total Output Power Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Device On-State Drain to Source Voltage TinySwitch-II Switching Frequency TinySwitch-II Minimum Switching Frequency (inc. Jitter) TinySwitch-II Maximum Switching Frequency (inc. Jitter) Ripple to Peak Current Ratio Device Current Limit, Minimum Device Current Limit, Maximum Primary RMS Current Maximum Duty Cycle
Amps Amps Amps
Power Supply Components Selection
CIN VMIN VMAX VCLO PZ uFarads Volts Volts Volts W 13.6 82 375 130 0.3 Input Filter Capacitor Minimum DC Input Voltage Maximum DC Input Voltage Clamp Zener Voltage Estimated Primary Zener Clamp Loss
Power Supply Output Parameters
VDx PIVSx ISPx ISRMSx IRIPPLEx Volts Volts Amps Amps Amps 0.5 39 1.78 0.86 0.70 0.7 Output Winding Diode Forward Voltage Drop 91 Output Rectifier Maximum Peak Inverse Voltage 0.74 Peak Secondary Current 0.36 Secondary RMS Current 0.29 Output Capacitor RMS Ripple Current
Page 13 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266 Transformer Construction Parameters
Core/Bobbin Core Manuf. Bobbin Manuf. LPmin NP AWG CMA uHenries AWG Cmils/A EE16 Generic Generic 978 76 30 696 Core and Bobbin Type Core Manufacturing Bobbin Manufacturing
03-April-2001
VOR BW M L AE ALG BM BAC LG LL LSEC
Volts mm mm cm^2 nH/T^2 Gauss Gauss mm uH nH
60.00 8.50 0.0 3.0 0.19 168 2611 900 0.12 19.6 20
Minimum Primary Inductance Primary Winding Number of Turns Primary Wire Gauge (Rounded to next smaller standard AWG value) Primary Winding Current Capacity (200 < CMA < 500). Warning! Primary circular mils per amp (CMA) is too high. Decrease transformer size, decrease L, increase NS, decrease VACmin, increase VOR, increase KrpKdp. Reflected Output Voltage Bobbin Physical Winding Width Safety Margin Width Number of Primary Layers Core Effective Cross Section Area Gapped Core Effective Inductance Maximum Operating Flux Density AC Flux Density Gap Length (Lg > 0.051 for TOP22X, Lg > 0.1 for TOP23X) Estimated Transformer Primary Leakage Inductance Estimated Secondary Trace Inductance
Secondary Parameters
NSx Rounded Down NSx Rounded Down Volts Vox Rounded Up NSx Rounded Up Vox Volts 24 - 28 7.00 16.16 Secondary Number of Turns 16 Rounded to Integer Secondary Number of Turns 11.87 Auxiliary Output Voltage for Rounded to Integer NSx 17 Rounded to Next Integer Secondary Number of Turns 12.66 Auxiliary Output Voltage for Rounded to Next Integer NSx 28 - 32 Secondary Wire Gauge Range (CMA range 500 - 200). Wire gauge (AWG) is less than 26 AWG. Consider parallel winding (see AN-18, AN-22).
AWGSx Range AWG
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 14 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
8 Performance Data
TEST EQUIPMENT INPUT: VOLTECH (PM1000) AC POWER ANALYZER. OUTPUT: KIKUSUI (PLZ153W) ELECTRONIC LOAD.
8.1
Efficiency
Efficiency vs load @ 25 C ambient
%
90 80 70 60 50 40 30 20 10 0 0.00
85 VAC, I12=0 85 VAC, I12=full load 265 VAC, I12=0 Stand by power: Pin =0.248 W @ 85 VAC Pin = 0.383 W @ 265 VAC 0.10 0.20 0.30 0.40 0.50 265 VAC, I12=full load
5 V output load (A)
Figure 8.1.1 - Efficiency vs. Output Power @ 25 C Ambient.
E ffic ie n c y @ fu ll lo a d 77 76 75 74 73 72 71 70 85 105 125 145 165 185 205 225 245 265 In p u t V o lta g e
Figure 8.1.2 - Efficiency vs. Line Voltage @ 25 C Ambient.
%
Page 15 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
8.2
Regulation @ 25 C Ambient
Load regulation @ 25 C ambient
108 106 104
V/VnomX100
102 100 98 96 94 92 0.00 0.10 0.20 0.30 0.40 0.50 5 VDC output load (A)
5 VDC @ 85 VAC 12 VDC @ 85 VAC 5 VDC @ 265 VAC 12 VDC @ 265 VAC
Figure 8.2.1 - Line Regulation @ Full Load, 25 C Ambient.
L in e r e g u la t io n @ f u ll lo a d , 2 5 C a m b ie n t
108 106
Vout/VnomX100
104 102 100 98 96 94 92 85 105 125 145
5 V D C o u tp u t
1 2 V D C o u tp u t
165
185
205
225
245
265
V IN (V A C , 6 0 H z )
Figure 8.2.2 - Load Regulation @ 25 C Ambient
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 16 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
8.3
Temperature
13 12 11 10 9 8 7 6 5 4
Vout(12VDC@ 0.2A)
Vout(5VDC@0.5A)
5.0 4.5 4.0 3.5 3.0 2.5 2.0
Pout(W)
VDC
With heat sink
Witout heat sink
66 70 74 78 82 86 90 94 98 102 T ambient (C)
25 30 35 40 45 50 55 60 65 70 75 80 85 T ambient (C)
Figure 3.3.2 - Max Power. (Source Pin Temperature 110 C.)
Figure 8.3.1 - VOUT vs. Ambient Temperature.
Page 17 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
8.4
Waveforms (2 kV config."1")
8.4.1 Turn-on Delay/Hold-up Time
CH4 CH4 CH2 CH2
Figure 8.4.1.1 - Turn-on Delay - First Current Pulse. CH4: IN_MAINS (0.5 A/div), CH2: VOUT (1 V/div). CH4
Figure 8.4.1.2 - Hold-up Time - Last Current Pulse. CH4: IIN_MAINS (0.2 A/div), CH2: VOUT (1 V/div). CH4
CH2
CH2
Figure 8.4.2.1 - ID and VDS @VIN=85VAC. CH4: ID (0.2 A/div), CH2: VDS (100V/div)
Figure 8.4.2.2 - ID and VDS @ VIN=265VAC CH4: ID (0.2 A/div), CH2: VDS 100 V/div)
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 18 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
CH4 CH4 CH2 CH2
Figure 8.4.2.3 - ID and VDS @ 85 VAC. CH4: ID (0.2 A/div), CH2: VDS (100 V/div)
Figure 8.4.2.4 - ID and VDS @ 265 VAC. CH4: ID (0.2 A/div), CH2: VDS (100 V/div)
8.4.2 Auto-Restart Maximum load, before power limiting (entering auto-restart) @ 25 C
VIN (VAC, 60 Hz) 85 85 Load condition 1 2 5 VDC output 1.09 A @ 4.74 V 0.5 A @ 4.89 V
12 VDC output 0.2 A @ 13.04 V 0.45 A @ 12.46 V
Total output (W) 7.8 8.05
Load condition 1: 5 V output overloaded; 12 VOUT full load. Load condition 2: 12 V output overloaded; 5 VOUT full load. Because of higher efficiency on the 12 V output, the maximum power output occurs when the 12 V output is overloaded.
Figure 8.4.3 - Auto restart @ 85 VAC. CH4: ID (0.2 A/div),
CH3: VDS (100 V/div)
Page 19 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
CH4 CH1
CH4 CH1
Figure 8.4.4.1 - Output Voltage Ripple at Full Load 5 VDC at 85 VAC. CH4: IOUT (0.2 A/div), CH1: VOUT (50 mV/div)
Figure 8.4.4.2 - Output Voltage Ripple at Full Load 5 VDC at 265 VAC. CH4: IOUT (0.5 A/div), CH1: VOUT (50 mV/div)
CH4
CH4
CH1
CH1
Figure 8.4.4.3 - Output Voltage Ripple at Full Load 12 VDC at 85 VAC. CH4: IOUT (0.2 A/div), CH1: VOUT (200 mV/div)
Figure 8.4.4.4 - Output Voltage Ripple at Full Load 12 VDC at 265 VAC. CH4: IOUT (0.2 A/div), CH1: VOUT (200 mV/div)
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 20 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
8.5
Transient Response
CH1
CH1
CH4
CH4
Figure 8.5.1 - Transient Response - 5 V Output @ VIN = 115 VAC 20-80% Load Change. CH4: IOUT (0.2 A/div), CH1: VOUT (100 mV/div)
Figure 8.5.2 - Transient Response - 5 V Output @ VIN = 230 VAC 20-80% Load Change. CH4: IOUT (0.2 A/Div). CH1: VOUT (100 mV/Div)
CH1
CH1
CH4
CH4
Figure 8.5.3 - Transient Response - 5 V Output @ VIN = 115 VAC 20-80% Load Change. CH4: IOUT (0.1 A/div), CH1: VOUT (1 V/div)
Figure 8.5.4 - Transient Response - 5 V Output @ VIN = 230 20-80% Load Change. CH4: IOUT (0.1 A/Div), CH1: VOUT (1 V/Div)
Page 21 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
8.6
Conducted EMI Scans
The attached plots show worst-case EMI performance for EP8 as compared to CISPR22B conducted emissions limits. Peak detection is commonly used for initial diagnosis of EMI, as full frequency range results can be quickly obtained, using a common spectrum analyzer. This is also a worst-case form of analysis, as the CISPR22B limits are based on quasi-peak and average detection, both of which give lower amplitude results than peak detection. For EMI and safety techniques refer to PI application note AN15 (Figure 6 shows a typical test set up).
Quasi-peak
Average
Figure 8.6.1 - EP9, TNY266, L, N, 120 VAC, Full Load, CISPR Limits.
Figure 8.6.2 - EP9, TNY266, L, N, 230 VAC, Full Load, CISPR Limits.
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 22 of 32
03-April-2001 8.7
5 W Universal Input Dual Output Isolated TNY266
Surge Voltage Immunity (2 kV and 6 kV, 1.2/50 s per IEC1000-4-5)
The surge protection for configuration "1" (2 kV) and configuration "2" (6 kV) is illustrated in the schematics (pages 4 and 5). R7, R8 limit the maximum surge current to approximately 50 A, the value at which the clamping voltage of the varistor is characterized.(< 800 V). This voltage level was selected to ensure enough margin for the diode bridge D1-D4. The 6 kV, 1.2/50 s pulse at 800 V clipping level is approximately 100 s (see Fig. 8.7.2). From the graph in Fig.8.7.1 it can be inferred that the unit will survive 10 k surges of 6 kV. Reducing the value of R7, R8 would reduce the total number of 6 kV pulses the unit can survive.
Figure 8.7.1 - Varistor Life (Number of Surges) as a Function of the Rectangular Pulse Amplitude and its Duration.
VRV1
Varistor Clamp Voltage
Instantaneous Line Voltage
VAC Figure 8.7.2 - Varistor Clamping Voltage.
Page 23 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
8.8
Acoustic Emissions
The power supply was subjected to acoustic emissions measurement. The worst-case noise was measured for variations of both AC line and output loading conditions and is presented in Figure. 8.8.1. The test unit was placed in an anechoic acoustic chamber, with a microphone located approximately 1" (25 mm) above the transformer (T1). The power supply was oriented in a horizontal position with the power supply output loaded via an external Kikusui electronic load. The microphone output was fed to an Audio Precision audio analyzer to provide the measurements shown. The curves shown indicate the spectral content of the noise generated by the supply once the ANSI-A weighting factor has been applied. The audio limit line (Figure 8.8.1) visible at +35 dB represents the generally accepted threshold for power supply audio noise. A discrete audio frequency amplitude was used rather than a dBA value (dBA represents the whole audio spectrum). Large peaks may not raise the dBA value yet can result in unacceptable perceived noise. As a reference, the approximate dBA background noise floor level is 30 dBA. The microphone sensitivity is such that 20 P = 0 dB SPL. Up to a further 20 dB reduction can be expected from the measurement shown, once the power supply is sealed inside an enclosure.
Audio Precision
+80 +70 +60 +50 +40 d B r A +10 +0 -10 -20 -30 0 2k 4k +30 +20
FFT SPECTRUM ANALYSIS
04/18/01 10:47:42
+35 dB=Audio Noise
Ambient Noise
6k 8k 10k Hz 12k 14k 16k 18k 20k 22k
Figure 8.8.1 - Worst Case Audio Level, 120 VAC Input, Full Load.
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 24 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Appendix A Example of 24 V Output Design
Appendix A1.1 Schematic of 24 V Design
Page 25 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
Appendix A1.2 Bill of Materials (5 W, 5 VDC, 24 VDC PS)
Configuration "2", 6 kV Item Qty. Ref. 1 2 C1, C2 Description 6.8 F, 400 V, 105 C 0.1 F, 50 V, ceramic 2.2 nF, Y1-Safety 180 F, 35 V (0.12 ) 82 F, 35 V 100 F, 10 V Glass Passivated Diode 600 V, 1 A, 150 ns 60 V, 1.1 A, Schottky 400 V, 1 A, ultrafast 0.5 A, 250 V, fast-acting fuse Header, 3 pos.,0.156 spacing low current 2.2 mH 5%, 10.9 , 128 mA 18 H, 10%, 2.2 A 4.7 k, 1/8 W 100 , 1/8 W 1 k, 1/8 W 13 k, 1/4 W 2.4 k, 1/4 W 47 , 1 W Transformer Off-line Switcher Optocoupler 200 V Transient suppressor Zener, 4.3 V 2% Varistor, 275 VAC, 14 mm Manufacturer Rubycon Part Number 400BXA6R8M10 x16 ECK-DNA222ME
2 1 C3 3 1 C4 4 1 C5 5 1 C6 6 1 C7 7 8 4 D1- D4 9 1 D5 10 1 D6 11 1 D7 12 1 F1 13 2 **J1,J2 14 2 *LED1,LED2 15 1 L1 16 1 L2 17 1 R2 18 1 R3 19 1 R4 20 1 *R5 21 1 *R6 22 2 R7, R8 23 1 T1 24 1 U1 25 1 U2 26 1 VR1 27 1 VR2 28 1 RV1 *Optional **Remove middle pin for J1
Panasonic Panasonic Panasonic Panasonic
Fagor ON ON Littelfuse Siemens Bosung Toko
1N4005GP 1N4937 11DQ6 MUR140 Series 263 LG3369 622LY-180k
Ohmite EE16 Custom Power Integrations
OX470K TNY266P PC817A BZY-97C200 1N5991C V275LA20A
Harris/Littlefuse
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 26 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Appendix A1.3 Transformer Spreadsheet Design Warning Power Supply Input
VACMIN VACMAX FL TC Z N Volts Volts Hertz mSeconds % 85 265 50 2.46 0.61 72.0 Minimum AC Input Voltage Maximum AC Input Voltage AC Main Frequency Bridge Rectifier Conduction Time Estimate Loss Allocation Factor Efficiency Estimate
Power Supply Outputs
VOx IOx Volts Amps 5.00 0.500 24.00 Output Voltage 0.104 Power Supply Output Current
Device Variables
Device PO VDRAIN VDS FSnom FSmin FSmax KRPKDP ILIMITMIN ILIMITMAX IRMS DMAX Watts Volts Volts Hertz Hertz Hertz TNY266 5.00 521 4.5 132000 120000 144000 0.83 0.33 0.38 0.14 0.42 Device Name Total Output Power Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Device On-State Drain to Source Voltage TinySwitch-II Switching Frequency TinySwitch-II Minimum Switching Frequency (inc. Jitter) TinySwitch-II Maximum Switching Frequency (inc. Jitter) Ripple to Peak Current Ratio Device Current Limit, Minimum Device Current Limit, Maximum Primary RMS Current Maximum Duty Cycle
Amps Amps Amps
Power Supply Components Selection
CIN VMIN VMAX VCLO PZ uFarads Volts Volts Volts W 15.0 86 375 130 0.3 Input Filter Capacitor Minimum DC Input Voltage Maximum DC Input Voltage Clamp Zener Voltage Estimated Primary Zener Clamp Loss
Power Supply Output Parameters
VDx PIVSx ISPx ISRMSx IRIPPLEx Volts Volts Amps Amps Amps 0.5 39 1.78 0.86 0.69 1.0 180 0.37 0.18 0.14 Output Winding Diode Forward Voltage Drop Output Rectifier Maximum Peak Inverse Voltage Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current
Page 27 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266 Transformer Construction Parameters
Core/Bobbin Core Manuf. Bobbin Manuf. LPmin uHenries NP AWG
CMA
03-April-2001
EE16 Generic Generic 954 76 30
722
Core and Bobbin Type Core Manufacturing Bobbin Manufacturing Minimum Primary Inductance Primary Winding Number of Turns Primary Wire Gauge (Rounded to next smaller standard AWG value) Primary Winding Current Capacity (200 < CMA < 500). Warning! Primary circular mils per amp (CMA) is too high. Decrease transformer size, decrease L, increase NS, decrease VACmin, increase VOR, increase KrpKdp. Reflected Output Voltage Bobbin Physical Winding Width Safety Margin Width Number of Primary Layers Core Effective Cross Section Area Gapped Core Effective Inductance Maximum Operating Flux Density AC Flux Density Gap Length (Lg > 0.051 for TOP22X, Lg > 0.1 for TOP23X) Estimated Transformer Primary Leakage Inductance Estimated Secondary Trace Inductance
AWG
Cmils/A
VOR BW M L AE ALG BM BAC LG LL LSEC
Volts mm mm cm^2 nH/T^2 Gauss Gauss mm uH nH
60.00 8.50 0.0 3.0 0.19 164 2553 924 0.13 19.1 20
Secondary Parameters
NSx Rounded Down NSx Rounded Down Volts Vox Rounded Up NSx Rounded Up Vox Volts 24 - 28 7.00 31.82 Secondary Number of Turns 31 Rounded to Integer Secondary Number of Turns 23.36 Auxiliary Output Voltage for Rounded to Integer NSx 32 Rounded to Next Integer Secondary Number of Turns 24.14 Auxiliary Output Voltage for Rounded to Next Integer NSx 31 - 35 Secondary Wire Gauge Range (CMA range 500 - 200). Wire gauge (AWG) is less than 26 AWG. Consider parallel winding (see AN-18, AN-22).
AWGSx Range AWG
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 28 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266
Revision History
Date 8.16.99 11.6.99 2.7.2000 2.24.2000 3.23.2000 5.18.2000 7.12.2000 4.3.2001 Author SL SL SL SL SL SL SL SL Rev 1 2 3 4 5 6 7 8 Description First Draft Second Draft Third Draft 4th Draft Release Revised layout, leaded C3 Revised schematic/BOM (L1, C3, C5, replaced R1=8.2 with F1) Replaced TNY256P with TNY266P
Page 29 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266 Notes
03-April-2001
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 30 of 32
03-April-2001
5 W Universal Input Dual Output Isolated TNY266 Notes
Page 31 of 32
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
5 W Universal Input Dual Output Isolated TNY266
03-April-2001
For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. PI Logo, TOPSwitch and TinySwitch are registered trademarks of Power Integrations, Inc. (c) Copyright 2001, Power Integrations, Inc.
WORLD HEADQUARTERS NORTH AMERICA - WEST Power Integrations, Inc. 5245 Hellyer Avenue San Jose, CA 95138 USA. Main: +1*408*414*9200 Customer Service: Phone: +1*408*414*9665 Fax: +1*408*414*9765 KOREA Power Integrations International Holdings, Inc. Rm# 402, Handuk Building, 649-4 Yeoksam-Dong, Kangnam-Gu, Seoul, Korea Phone: +82*2*568*7520 Fax: +82*2*568*7474
EUROPE & AFRICA Power Integrations (Europe) Ltd. Centennial Court Easthampstead Road Bracknell Berkshire RG12 1YQ, United Kingdom Phone: +44*1344*462*301 Fax: +44*1344*311*732 JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222, Japan Phone: +81*45*471*1021 Fax: +81*45*471*3717
TAIWAN Power Integrations International Holdings, Inc. 2F, #508, Chung Hsiao E. Rd., Sec. 5, Taipei 105, Taiwan Phone: +886*2*2727*1221 Fax: +886*2*2727*1223
CHINA Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen Guangdong, 518031 Phone: +86*755*367*5143 Fax: +86*755*377*9610
INDIA (Technical Support) Innovatech #1, 8th Main Road Vasanthnagar Bangalore, India 560052 Phone: +91*80*226*6023 Fax: +91*80*228*9727
APPLICATIONS HOTLINE World Wide +1*408*414*9660 APPLICATIONS FAX World Wide +1*408*414*9760
Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 32 of 32


▲Up To Search▲   

 
Price & Availability of EPR-9

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X